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Abstract. We present a simple derivation for the scaling behaviour of the maximum 
Lyapunov characteristic exponent A of infinite product of symplectic random matrices. 
The considered random matrices depend on a parameter E and A = 0 for E = 0. We obtain 
A X E @  with either p =$  or p =$ depending on the probability distribution of the matrix 
elements. The results are in agreement with a previous numerical simulation. 

Recently the problem of the scaling behaviour of the maximum Lyapunov exponent 
A for the infinite product of random symplectic matrices has been studied numerically. 
Benettin (1984) and Paladin and Vulpiani (1986) studied the behaviour of A for infinite 
product of symplectic matrices with the following form: 

where U is the N x N identity matrix, â  is a symmetric random matrix whose non-zero 
elements are only u ~ , ~  and such that Ii -jl d 1. 

For A defined by 

it is trivial to see that at E = 0, A = 0; the authors mentioned above found 

A E & P  (3) 

with p = 4 if the mean value of ay # 0 and /3 = 3 if the mean value of aij = 0. The interest 
in the problem is due to the fact that if one considers a symplectic map 

d n  + 1) = d n ) + p ( n )  
p (  n + 1) = p ( n )  + & V F [ q ( n  + l ) ]  

(4) 

where V = ( d / d q , ,  . . . , d/dqN) ,  the linearised evolution of (4) which gives A is given 
by a matrix of the form (1). So replacing the ‘true’ linearised evolution of map (4) 
with a product of random matrices of the form (1) one has a crude, but not trivial, 
approximation of the dynamics. Moreover the map (4) can be considered as the 
PoincarC map of an ( N +  1)-dimensional Hamiltonian system. 
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In addition, symplectic random matrices (but with a form different from (1)) are 
involved in solid state problems with disorder (Pichard and Sarma 1981, Demda and 
Gardner 1984). Also in this case in the limit of weak disorder one has in the case of 
2 x 2 matrices a scaling law with /3 = 2 (Derrida and Gardner 1984). 

Now we derive the scaling law (3) with /3 =4 and /3 = f .  Introducing 

we have 

BM= n A,(k)=A,M+ c Abb,(i)Ai+ C A6b,( i )AibE(i+J)A[ 
M 

k = l  i+ j=M-I  i + j + k = M - 2  

+. . .+ c [A:  b,( i ,)A)b, ( i l  + i2) . . . Ak]  + . . . . ( 5 )  
i l+ i2+ ...+ i n =  M - ( n - I )  

It is easy, noting that 

to compute the leading contribution to the average of an element of the matrix BM 
given by the term Zil+, , ,+,n+,=M-n [A:  . . . Ak+l] in ( 5 ) ,  if = (Y > 0 (where (.) indicates 
the average over the non-zero elements of the matrix) and if N 3 3, this gives rise to 

M2"+' 
(3a&)n 

( 2 n  + l ) !  
i l ,  i2, . . . , inf l  = 3nan&n c 

i l  +i2+...+ i n + l  = M - n 

In (6) the term 3" is due to the fact that only 3 elements on a row of the matrix a* are 
non-zero and the sum Zil+., .+in=M-(n-l)  i I ,  i 2 , .  . . , in is approximated by . .  

jx,+ ...+ x n = M  X I  9 ~ 2 ,  - * * 3 xn dx, 3 * 9 dxn. 
From (6) we obtain for large M 

~ ( 1 )  = J5a1'2&1'2 (7') 

where (( )) is the average of the probability distribution of the random matrices. 

generalised Lyapunov exponent L( q )  defined (for large M) as 
Note that L(1) is not exactly equal to A (see Benzi et a1 1985); we recall that the 

(1B~5(0)1')-exp L ( q ) M  (8) 

in the general case presents some deviation from the linear law 

L ( q )  = A q .  (9) 

The relation (9) holds exactly only in the limit of no intermittency so the estimation 
A = L(1) (or A =;L(2)  in the case q= 0) is an approximation. Rigorously it is an 
upper bound because L ( q ) / q  must increase with q (see Benzi et al 1985). However 
it is reasonable to assume that the intermittency changes only the constant in front of 
c P  and not the power laws. This is verified in the numerical computation. 
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The case with & = O  and a:= y need a slightly different computation. Let us 
- 

consider 

B L B M  = [ (A:)M + (A:) ’bz( i ) (A:y  
i + j =  M +  1 

+ (Ai)ib:(i)(A:yb:(i+j)(A:)k+. . .] 
x [ A f  + Abbe(i)A{+ 1 Abb,(i)A’,b,(i+j)A,k+. . . . 

i + j + k =  M - 2  

(10) 
i + j = M - 1  i + j + k =  M - 2  1 

Note that because 
the mean value of an element of B b B M  only the terms 

( A,f )MAf + 

= 0 and moreover a^( n )  is independent of a^( m ) ,  then if m # n in 

( A:)i b:( i)( A:yA’,b, ( i)Ab 
i + j = M - 1  

+ k  k + (A:)’b:( i)(A:)Jb:( i + j ) ( A , )  A,b,( i + j)A’,b,( i)Ab 
i + j + k =  M - 2  

+ . . .  ( 1 1 )  

give a non-zero contribution. 

term in ( 1  1 )  is 
Because of the independence of a^( k) and the fact that q = 0 one has that the nth 

For equation (12) the same remarks hold as for equation (6). From (12) we obtain 

( (~(01, B ~ , B , s ( ~ ) ) )  = ( l ~ M ~ ( o ) l ’ > -  exp L ( ~ ) M  (13)  

Therefore, in the approximation A = L( q ) /  q we obtain 

i f q = a > O  
if = 0. 

The numerical simulations give the same power laws with the constants in front of E’ 

smaller than those in (14) (let us recall that because of the concavity of L ( q ) ,  (14) is 
an upper bound). In the case > 0 the difference in the constant between (14) and 
numerical computation is 0 ( 5 % )  and in the other case 0 ( 1 5 O / 0 ) .  The scaling laws (7’) 
and (13’) are in agreement with numerical computation with a precision of 1 % .  

Part of this work was carried out during our visit to the L D Landau Institute for 
Theoretical Physics in Moscow; we thank the USSR Academy of Science for this 
opportunity. We are grateful to 0 N Dorokhov for useful discussions. A particular 
acknowledgment is due to G Paladin for fruitful suggestions and his help in the 
numerical computations. 
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